
Efficient IIoT Communications
An OPC-UA, HTTP, Modbus and MQTT benchmarking discussion

Johnathan Hottell

April 30 2019

What’s Better, Modbus or MQTT?

ÅThat’s a loaded question

ÅIt depends…

ÅThere’s no way to make an objective comparison without
framing better questions first

Agenda

ÅDiscuss the issues that arise when thinking about how to benchmark
protocols

ÅSending a single value –what is the actual cost

ÅSending Nine values and data concentration

ÅReal world - Sending 389 values for an Oil and Gas wellsite on change

ÅFinal thoughts

Start by framing the application more clearly

ÅBest for the Plant floor?

ÅBest for Interoperable interfaces on a wired network?

ÅBest for IoT Wired Networks?

ÅBest for IIoT –Constrained networks?

ÅBest for battery powered devices?

ÅBest for distributed real-time SCADA?

Each of these questions has a different answer... and the answers may
not be straight forward…

Protocol Use Overlap

ÅMany protocols can be
used in similar scenarios –
that doesn't mean they're
a perfect fit for them all

ÅWhat are your
applications most
important requirements?

HTTP

Manufacturing

IoT

Internet

Industrial

SCADA
Plant Floor

MQTT

OPC-UA

Modbus

IT

Low Bandwidth

Intermittent
Connection

Fragile Networks

Broadband
Network

Real-Time

Poll-
Response

Protocol

Serial

TCP/IP
Standard

Machine to Machine

Cloud

Aps

Small Code Footprint

Free

RESTful

JSON

Open

On Exception

Ideal Conditions vs The Real World

ÅExpectations vs reality –the results are usually more complicated
than you think

ÅIdeal condition experiment –testing on the bench can be misleading
–for instance testing using a 100/1000 network vs on a slow SCADA
network

ÅBe careful to not test to win

Hardware and Software Used for Testing

ÅHardware
ÅWindows 10 Laptop x 2
ÅRaspberry Pi
ÅEZ Logix PLC
ÅThermo Scientific AutoPilotPro
ÅMoxa Ethernet Switch

ÅOS
ÅWindows
ÅLinux Mint
ÅRaspbian Stretch

ÅSoftware
ÅNode-Red
ÅIgnition
ÅACM
ÅKepware
ÅWireshark
ÅMQTT.fx
ÅMQTTSpy

Use case:
Retrieve 1 Value

Retrieve 1 value via OPC, HTTP,
Modbus RTU Encapsulated,
and MQTT

Tag001 499.000000

Communication Events That Consume
Bandwith
ÅMaking the connection

ÅTransferring data

ÅKeeping the connection alive

ÅTearing down the connection

Slow Connection Considerations

ÅIf you are on a high speed network you may just consider data bytes
and not think about the number of packets sent

ÅPackets sent is a critical metric on a slow network –total round trip
latency can be a killer if a lot of small packets need to be sent vs fewer
larger packets

OPC,
75

HTTP,
8

Modbus,
10

MQTT,
8

Sparkplug
15

0

10

20

30

40

50

60

70

80

PACKETS

Packets to connect

OPC HTTP Modbus MQTT Sparkplug

OPC,
12,393

HTTP,
700

Modbus,
450

MQTT,
520

Sparkplug
2,610

0

2000

4000

6000

8000

10000

12000

14000

BYTES

Bytes to connect

OPC HTTP Modbus MQTT Sparkplug

Making the Connection

OPC,
12,393

HTTP,
700

Modbus,
450

MQTT,
520

Sparkplug
2,610

0

2000

4000

6000

8000

10000

12000

14000

BYTES

Bytes to connect

OPC HTTP Modbus MQTT Sparkplug

Cost to Connect

ÅProtocols must connect before
transferring data

ÅOPC send’s a lot of data on
connection.

ÅOPC’s best use cases may not be
over slow, constrained, or fragile
networks…

Cost to Connect

ÅSparkplug B sends a bit more
data on connection than some
of the other protocols, this is
because of the “Birth” message

OPC,
12,393

HTTP,
700

Modbus,
450

MQTT,
520

Sparkplug
2,610

0

2000

4000

6000

8000

10000

12000

14000

BYTES

Bytes to connect

OPC HTTP Modbus MQTT Sparkplug

Payload

ÅNow that the connection is made, how much data is used to send one
value

OPC,
6

HTTP,
8

Modbus
Maintain,

2

MQTT,
2

Modbus
Release,

9

0

1

2

3

4

5

6

7

8

9

10

PACKETS

Packets for a single value

OPC HTTP Modbus Maintain MQTT Modbus

OPC,
510

HTTP,
831

Modbus
Maintain,

119

MQTT,
139

Modbus
Release

571

0

100

200

300

400

500

600

700

800

900

BYTES

Bytes for a single value

OPC HTTP Modbus Maintain MQTT Modbus

Data used to send a single value

OPC,
510

HTTP,
831

Modbus
Maintain,

119

MQTT,
139

Modbus
Release

571

0

100

200

300

400

500

600

700

800

900

BYTES

Bytes for a single value

OPC HTTP Modbus Maintain MQTT Modbus

Maintaining a Connection vs Disconnecting
When Done

ÅHTTP usually connects and
releases when done, this means
it is going to be more inefficient
for a single value than if the
connection is held open

ÅSimilarly, Modbus usually
releases the port when done
though in some cases it can be
set up to maintain the
connection

OPC,
510

HTTP,
831

Modbus
Maintain,

119

MQTT,
139

Modbus
Release

571

0

100

200

300

400

500

600

700

800

900

BYTES

Bytes for a single value

OPC HTTP Modbus Maintain MQTT Modbus

Maintaining a Connection vs Disconnecting
When Done

ÅMQTT is intended to connect
then maintain the connection

ÅModbus and MQTT are both
fairly efficient when you hold
the connection open

MQTT Wireshark

The actual payload for a single value in a MQTT message is
insignificant compared to the rest of theTCP/IP overhead.
{ŜƴŘƛƴƎ ƳƻǊŜ ǇŀȅƭƻŀŘ ǘƘŀƴ ŀ ǎƛƴƎƭŜ ǾŀƭǳŜ ǿƻǳƭŘ ōŜ ƳƻǊŜ ŜŦŦƛŎƛŜƴǘΧ

Modbus TCP Release When Done Wireshark

The payload for a single value in a Modbus Release When Done message
is even more insignificant compared the rest of the connection and TCP/IP
overhead...

Maintaining the connection

ÅMaintaining a connection unfortunately is not free

ÅThere is a keep-alive ping sent on an interval

ÅSome implementations let you adjust this keep-alive ping frequency

ÅHow often you ping depends on the criticality of knowing when a
device goes offline vs conserving bandwidth

OPC,
5

HTTP, 0

Modbus,
3

MQTT,
2

0

1

2

3

4

5

6

PACKETS

Packets to keep-alive

OPC HTTP Modbus MQTT

OPC,
438

HTTP, 0

Modbus,
184

MQTT,
176

0

50

100

150

200

250

300

350

400

450

500

BYTES

Bytes to keep-alive

OPC HTTP Modbus MQTT

Cost to Maintain a Connection
Unfortunately you can’t always adjust
the keep-alive time, you can often set it
with MQTT as it was designed with
bandwidth usage in mind.

So keeping the things we have learned in mind;
What would the “Total Cost of Ownership”(TCO)
be to send one value every minute for an hour (60
records), with connection and keepalive cost
included?

AKA “Minute Data”

OPC,
495

HTTP,
480

Modbus
Maintain,

166

MQTT,
152

Modbus
Release,

540

0

100

200

300

400

500

600

PACKETS

Packets

OPC HTTP Modbus MQTT Modbus Lazy

OPC,
37,095

HTTP,
49,860

Modbus
Maintain,

9,798

MQTT,
10,972

Modbus
Release,
33,000

0

10,000

20,000

30,000

40,000

50,000

60,000

BYTES

Bytes

OPC HTTP Modbus MQTT Modbus Lazy

TCO of an hours worth of minute data
Assuming keep-alive can be set to 5
minutes on OPC, Modbus, and MQTT

Data On Change Example For a Valve Station
OK, so now what if
we needed to know
within five seconds
when a valve started
moving?
(Valve moves twice
per day)
(Single tag –not a
perfect example)

OPC,
105,195

HTTP,
138,240

Modbus
Maintain,

35,434
MQTT,

588

Modbus
Release,
172,800

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

PACKETS

Packets

OPC HTTP Modbus MQTT Modbus Lazy

OPC,
8,230

HTTP,
14,359

Modbus
Maintain,

2,000

MQTT,
51

Modbus
Release,
10,000

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

BYTES

kB

OPC HTTP Modbus MQTT Modbus Lazy

TCO of a days worth of 5 second data
Assuming keep-alive can be set to 5
minutes, data changes twice per day

OPC, 8,230

HTTP,
14,359

Modbus
Maintain,

2,000

MQTT,
51

Modbus
Release,
10,000

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

BYTES

kB

OPC HTTP Modbus MQTT Modbus Lazy

TCO of a days worth of 5 second data
Assuming keep-alive can be set to 5
minutes, data changes twice per day

MQTT data
consumption is
significantly lower than
the others in this case
because the data is only
sent when the value
changes.

ModbusRelease
When Done

99.5%

MQTT
0.5%

Modbus MQTT

We are starting to
detect that MQTT can
be quite efficient when
set up tosend data
when it changes v.s.
traditional polling

More on this later…

kB MQTT on change vs Modbus Release When Done for a single value.
5 second resolution and data changes once per day

Use case:
Retrieve 9 Values

Retrieve 9 values every minute
via Modbus RTU Encapsulated
vs MQTT vs MQTT Sparkplug B

Differential Pressure 0.000000

Static Pressure 499.000000

Temperature 73.361351

MCFD 0.000000

MCF CD 0.000000

MCF PD 0.000000

Sales Valve 0.000000

Tubing Pressure 565.820007

Casing Pressure 576.809998

Considerations

ÅThese values are not in a contiguous Modbus block so Modbus has to
poll three different ranges of registers

ÅNot all drivers for the same protocol will give the same results

ÅSparkplug can bemore efficient if it is implemented as intended vs
sending unnecessary data

Actual MQTT Payload Sent In This Test

Å{"timestamp":1520722891000,"metrics":[{"name":"","alias":10,"time
stamp":1520722891000,"value":1},{"name":"","alias":11,"timestamp"
:1520722891000,"value":1},{"name":"","alias":12,"timestamp":15207
22891000,"value":1},{"name":"","alias":13,"timestamp":1520722891
000,","value":1},{"name":"","alias":14,"timestamp":1520722891000,"
value":1},{"name":"","alias":15,"timestamp":1520722891000,"value":
1},{"name":"","alias":16,"timestamp":1520722891000,"value":1},{"na
me":"","alias":17,"timestamp":1520722891000,"value":1},{"name":""
,"alias":18,"timestamp":1520722891000"value":1}],"seq":2}

Modbus
Modpoll,

29

Modbus ACM,
14

MQTT,
2

MQTT Sparkplug,
2

0

5

10

15

20

25

30

35

PACKETS

Packets for 9 values

Modbus Modpoll Modbus ACM MQTT MQTT Sparkplug

Modbus
Modpoll,

1,825

Modbus ACM,
897

MQTT,
897

MQTT Sparkplug,
303

0

200

400

600

800

1000

1200

1400

1600

1800

2000

BYTES

Bytes for 9 values

Modbus Modpoll Modbus ACM MQTT MQTT Sparkplug

Real Device, 9 values

Modbus
Modpoll, 1,825

Modbus ACM,
897

MQTT,
897

MQTT Sparkplug,
303

0

200

400

600

800

1000

1200

1400

1600

1800

2000

BYTES

Bytes for 9 values

Modbus Modpoll Modbus ACM MQTT MQTT Sparkplug

Different Modbus Drivers

Different modbus
drivers seem to return
different results, in this
case Modpoll seems to
send the data twice

Modbus
Modpoll, 1,825

Modbus ACM,
897

MQTT,
897

MQTT Sparkplug,
303

0

200

400

600

800

1000

1200

1400

1600

1800

2000

BYTES

Bytes for 9 values

Modbus Modpoll Modbus ACM MQTT MQTT Sparkplug

MQTT VS Modbus

MQTT Uses the same
ammount of bandwidth
as Modbus ACM, even
though it is sending 3x
more data (timestamp,
alias, and value)

Modbus
Modpoll, 1,825

Modbus ACM,
897

MQTT,
897

MQTT Sparkplug,
303

0

200

400

600

800

1000

1200

1400

1600

1800

2000

BYTES

Bytes for 9 values

Modbus Modpoll Modbus ACM MQTT MQTT Sparkplug

Sparkplug B Compresses Data 3x

MQTT Sparkplug B is 3x
more efficient than
regular MQTT sending
the exact same payload
because It compresses
the data.

Modbus
75%

MQTT
25%

MQTT Sparkplug B vs Modbus Poll Response

Modbus MQTT

Sparkplug B Data on Birth

{
"alias":13,
"timestamp":1520722891000,
"value":1

}

{
"name":"",

"alias":13,

"timestamp":1520722891000,

"dataType":"UInt16",

"value":1

}
then

On birth (connection) Sparkplug B
publishes important information
about the tags that will not be sent
in subsequent value updates

birth

Data Concentration

Now what if the same minute data was buffered and shipped via MQTT
every 10 minutes instead of every minute?

Modbus
Modpoll,

290

Modbus ACM,
140

MQTT,
2

MQTT Sparkplug,
2

0

50

100

150

200

250

300

350

PACKETS

Packets for 90 values

Modbus Modpoll Modbus ACM MQTT MQTT Sparkplug

Modbus
Modpoll,
18,250

Modbus ACM,
8,970

MQTT,
6,585

MQTT Sparkplug,
1,383

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

BYTES

Bytes for 90 values

Modbus Modpoll Modbus ACM MQTT MQTT Sparkplug

Same Device, 90 values sent every 10 minutes
(Modbus isn’t buffering, it is still polling every minute)

Modbus
87%

MQTT Spark Plug B
13%

Modbus MQTT Spark Plug B

MQTT Sparkplug B x10 buffered vs Modbus Poll Response

Oil and Gas
RTU Data On
Change

Retrieve 389 tags for a wellsite. Data
on exception and limited to minute
resolution - Modbus vs MQTT on
change.

Sample data on a real Thermo AutoPilot Pro RTU with plunger tags
Total 389 tags
Estimated how often the values would change based on usual activity and theoretical deadbands

223 discrete
tags that would
not change in
an hour

111 tags would
change hourly

19
intermittently
used analog
values

36 analog
values would
change each
minute

Hourly,
26%

No Change,
59%

2 Minute,
5% 1 Minute,

10%

Tag Change Frequency in an hour %

Hourly No Change 2Minute Minute

59% of the data doesn’t change
even once in a hour

Sowhy poll for it eachtime…

OPC,
27.72

HTTP,
17.52

Modbus,
8.04

MQTT All,
5.88

MQTT Sparkplug
B On Change

0.72
0

5

10

15

20

25

30

MB

mBto poll minute resolution data on 389 tags over a 24 hour period

OPC HTTP Modbus MQTT All MQTT Sparkplug B On Change

Modbus
91%

MQTT
9%

mBMQTT Sparkplug B On Change vs Modbus Poll Response

Modbus MQTT

Final Takeaways

ÅThe most bandwidth savings comes from report by exception

ÅSparkplug compresses 3x

ÅTrading Modbus for MQTT Sparkplug on exception can result in ~75%
to ~99.5% network bandwithsavings but it will depend on your
application, number of points, criticality of the data, and other factors

ÅNetwork bandwidth savings is always an estimate until you actually
implement and test in the real world...

About The Author

Johnathan Hottell has over 18 years of industrial SCADA Automation
experience and is currently the SCADA Supervisor at EXCO Resources, Inc.

Social
LinkedIn:Johnathan Hottell
Twitter: electronhacks
YouTube:electronhacks

The views expressed in this articledo not necessarily reflect the views of EXCO Resources, Inc.

